A Simple Synthesis of Reduction-Responsive Acrylamide-Type Nanogels for miRNA Delivery

Author:

Maruf AliORCID,Milewska Małgorzata,Lalik AnnaORCID,Student SebastianORCID,Wandzik IlonaORCID

Abstract

MicroRNAs (miRNAs) have great therapeutic potential; however, their delivery still faces huge challenges, especially given the short half-life of naked miRNAs due to rapid hydrolysis or inactivation by abundant nucleases in the systemic circulation. Therefore, the search for reliable miRNA delivery systems is crucial. Nanogels are one of the more effective nanocarriers because they are biocompatible and have a high drug-loading capacity. In this study, acrylamide-based nanogels containing cationic groups and redox-sensitive crosslinkers were developed for cellular delivery of anti-miR21 (a-miR21). To achieve this, post-polymerization loading of a-miR21 oligonucleotides into nanogels was performed by utilizing the electrostatic interaction between positively charged nanogels and negatively charged oligonucleotides. Different molar ratios of the amine groups (N) on the cationic nanogel and phosphate groups (P) on the miRNA were investigated. An N/P ratio of 2 allowed high miRNA loading capacity (MLC, 6.7% w/w) and miRNA loading efficiency (MLE, 99.7% w/w). Successful miRNA loading was confirmed by dynamic light scattering (DLS) and electrophoretic light scattering (ELS) measurements. miRNA-loaded nanogels (NG/miRNA) formed stable dispersions in biological media and showed an enhanced miRNA release profile in the presence of glutathione (GSH). Moreover, the addition of heparin to dissociate the miRNA from the cationic nanogels resulted in the complete release of miRNA. Lastly, a cell uptake study indicated that NG/miRNA could be easily taken up by cancer cells.

Funder

The National Science Centre (NCN), Poland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3