Polynaphthylimide–Azomethines Containing Triphenylamine or Carbazole Moieties with Tuned Optoelectronic Properties through Molecular Design

Author:

Soroceanu Marius,Constantin Catalin-PaulORCID,Damaceanu Mariana-Dana

Abstract

Polyazomethines containing electron-donor triphenylamine (TPA) or carbazole (Cbz) and electron-acceptor naphthyl(di)imide were synthesized and investigated with regard to thermal, optical and electronic features, with a focus on their modulation by molecular design. The polycondesation of an imido-based diamine with a Cbz- or TPA-based dialdehyde led to donor-acceptor polymers with good thermostability, up to 318 °C. These displayed good solubility in organic solvents, which enabled easy polymer processability in thin films with different molecular assemblies. The molecular order improved the charge carrier’s mobility, with a direct impact on the bandgap energy. The optical properties studied by UV–Vis absorption and fluorescence experiments showed solvent-dependence, characteristic for donor-acceptor systems. The structural parameters exerted a strong influence on the light-emissive behavior, with the prevalence of intrinsic or intramolecular charge transfer fluorescence contingent on the donor-acceptor strength and polymer geometry. All polymers showed good electroactivity, supporting both electrons and holes transport. The exchange of Cbz with TPA proved to be an efficient tool with which to decrease the bandgap energy, while that of naphthyl(di)imide with bis(naphthylimide) was beneficial for fluorescence enhancement. This study may contribute to a deeper understanding of the physico-chemistry of electronic materials so as to make them more competitive in the newest energy-related or other optoelectronic devices.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3