Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms

Author:

Klein Karoline12,Klamminger Gilbert Georg345ORCID,Mombaerts Laurent6,Jelke Finn27,Arroteia Isabel Fernandes2ORCID,Slimani Rédouane789,Mirizzi Giulia12,Husch Andreas26ORCID,Frauenknecht Katrin B. M.589ORCID,Mittelbronn Michel56891011,Hertel Frank12,Kleine Borgmann Felix B.12912

Affiliation:

1. Faculty of Medicine, Saarland University (USAAR), 66424 Homburg, Germany

2. National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg

3. Department of General and Special Pathology, Saarland University (USAAR), 66424 Homburg, Germany

4. Department of General and Special Pathology, Saarland University Medical Center (UKS), 66424 Homburg, Germany

5. National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg

6. Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg

7. Doctoral School in Science and Engineering (DSSE), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg

8. Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg

9. Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg

10. Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg

11. Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg

12. Hôpitaux Robert Schuman, 1130 Luxembourg, Luxembourg

Abstract

Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas—vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%—but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control.

Funder

Foundation Cancer Luxembourg

Luxembourg National Research Fund

Publisher

MDPI AG

Reference30 articles.

1. Applications of Raman Spectroscopy in Cancer Diagnosis;Auner;Cancer Metastasis Rev.,2018

2. A Review of Raman Spectroscopy Advances with an Emphasis on Clinical Translation Challenges in Oncology;Jermyn;Phys. Med. Biol.,2016

3. From Research to Diagnostic Application of Raman Spectroscopy in Neurosciences: Past and Perspectives;Klamminger;Free Neuropathol.,2022

4. Intraoperative Brain Cancer Detection with Raman Spectroscopy in Humans;Jermyn;Sci. Transl. Med.,2015

5. Intraoperative Discrimination of Native Meningioma and Dura Mater by Raman Spectroscopy;Jelke;Sci. Rep.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3