Enhanced Photovoltaic Performance of Asymmetrical Benzo Dithiophene Homopolymer Donor Materials in Nonfullerene Acceptor-Based Organic Photovoltaics

Author:

Xu Wei12,Du Li3,Du Zhengkun3ORCID,He Wei4,Li Hongxiang4,Li Guojuan5,Yang Cheng6ORCID,Cheng Pei4,Cao Zhong1ORCID,Yu Donghong27ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark

3. College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China

4. State Key Laboratory of Polymer Materials Engineering, Department of College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China

5. National Anti-Drug Laboratory Sichuan Regional Center, Chengdu 610206, China

6. Key Laboratory of Green Chemistry and Technology, State Key Laboratory of Biotherapy, College of Chemistry, Sichuan University, Chengdu 610064, China

7. Sino-Danish Center for Education and Research, DK-8000 Aarhus, Denmark

Abstract

Although much promising synthetic progress in conjugated polymer-based organic solar cells (OSCs) has resulted in significant improvement in power conversion efficiencies (PCEs) of from over 15 to >19.0% in the last five years, the sophisticated and complex reactions from at least two families’ monomers with remarkably different electron push–pull effects could still pose an unavoidable material burden for the commercialization of OSCs in the coming future. Therefore, the method of preparing a homopolymer from a sole monomer would significantly reduce the synthetic steps and costs in order to pave the way for the large-scale production of OSC materials. Therefore, alkylthio-thiophenyl-substituted benzo[1,2-b;4,5-b′]dithiophene (BDTTS) as the sole and key structural moiety with dihalogen and distannyl functional groups was designed and synthesized, respectively, in this study, for facile monomer syntheses and polymerizations to achieve three wide-bandgap homopolymer donors of BDTTS-alt-BDTT-Cl (P13), BDTTS-alt-BDTT (P15), and BDTTS (P14), respectively. The structural symmetry dependency on their physical, electrochemical, and optical properties, thin-film morphologies, and photovoltaic (PV) performance was investigated in detail. As a result, OSCs based on the asymmetric polymer P15, paired with BTP-eC9 as the electron acceptor, presented the best PV performance, with a PCE of 11.5%, a fill factor (FF) of 65.87%, and a short-circuit current (JSC) of 22.04 mA·cm−2, respectively. This PCE value is among the highest ones reported for BDT-type homopolymer donor-based OPVs, providing us with knowledge for obtaining promising PV performance from devices made of P15-like materials.

Funder

China Scholarship Council

Shandong Provincial Natural Science Foundation, China

Beijing Synchrotron Radiation Facility (BSRF) 1W1A for the 2D GIWAXS measurements

Sino-Danish Center for Education and Research

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3