Intramolecular Hydrogen Bonds in Normal and Sterically Compressed o-Hydroxy Aromatic Aldehydes. Isotope Effects on Chemical Shifts and Hydrogen Bond Strength

Author:

Hansen Poul ErikORCID,Kamounah Fadhil S.,Saeed Bahjat A.ORCID,MacLachlan Mark J.ORCID,Spanget-Larsen JensORCID

Abstract

A number of o-hydroxy aromatic aldehydes have been synthesized to illustrate the effect of steric compression and O···O distances on the intramolecular hydrogen bond and the hydrogen bond energies. Hydrogen bond energies have been calculated using the ‘hb and out’ method using either the MP2 method or the B3LYP functional with the basis set 6-311++G(d,p). However, several compounds cannot be treated this way. Hydrogen bond energies are also determined using electron densities at bond critical points and these results are in good agreement with the results of the ‘hb and out’ model. Two-bond deuterium isotope effects on 13C chemical shifts are suggested as an experimental way to obtain information on hydrogen bond energies as they easily can be measured. Isotope effects on aldehyde proton chemical shifts have also been measured. The former show very good correlation with the hydrogen bond energies and the latter are related to short O···O distances. Short O···O distances can be obtained as the result of short C=C bond lengths, conjugative effects, and steric compression of the aldehyde group. Short O···O distances are in general related to high hydrogen bond energies in these intramolecularly hydrogen-bonded systems of resonance assisted hydrogen bond (RAHB) type.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3