Affiliation:
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
Abstract
The use of a coal-based energy structure generates a large amount of CO2 and NOx. The numerous emissions from these agents result in acid rain, photochemical smog, and haze. This environmental problem is considered one of the greatest challenges facing humankind in this century. Preheating combustion technology is considered an essential method for lowering the emissions of CO2 and NO. In this research, the char prepared from O2/CO2 and O2/H2O atmospheres was employed to reveal the effects of the addition of an oxidizing agent on the combustion characteristics of char. The structural features and combustion characteristics of preheated chars were determined by Raman, temperature-programmed desorption (TPD), and non-isothermal, thermo-gravimetric (TGA) experiments. According to the experimental results, the addition of oxidizing agents promoted the generation of smaller aromatic ring structures and oxygen-containing functional groups. The improvement in the surface physicochemical properties enhanced the reactivity of char and lowered its combustion activation energy. Furthermore, the combustion mechanisms of the char prepared from the O2/CO2 and O2/H2O atmospheres were investigated using the density functional theory (DFT). The simulation results illustrated that the combustion essence of char could be attributed to the migration of active atoms, the fracture of the benzene ring structure, and the reorganization of new systems. The addition of oxidizing agents weakened the conjugated components of the aromatic ring systems, promoting the successive decomposition of CO and NO. The results of this study can provide a theoretical basis for regulating the reaction atmosphere in the preheating process and promoting the development of clean combustion for high-rank coals.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
High Level Talents Funding Project of Hebei Province
Heilongjiang Touyan Innovation Team Program
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献