Experimental and DFT Research on the Effects of O2/CO2 and O2/H2O Pretreatments on the Combustion Characteristics of Char

Author:

Zhang Lei1,Xu Jie2ORCID,Sun Rui1,Wang Zhuozhi2,Wang Xingyi1,Yuan Mengfan1,Wu Jiangquan1

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China

Abstract

The use of a coal-based energy structure generates a large amount of CO2 and NOx. The numerous emissions from these agents result in acid rain, photochemical smog, and haze. This environmental problem is considered one of the greatest challenges facing humankind in this century. Preheating combustion technology is considered an essential method for lowering the emissions of CO2 and NO. In this research, the char prepared from O2/CO2 and O2/H2O atmospheres was employed to reveal the effects of the addition of an oxidizing agent on the combustion characteristics of char. The structural features and combustion characteristics of preheated chars were determined by Raman, temperature-programmed desorption (TPD), and non-isothermal, thermo-gravimetric (TGA) experiments. According to the experimental results, the addition of oxidizing agents promoted the generation of smaller aromatic ring structures and oxygen-containing functional groups. The improvement in the surface physicochemical properties enhanced the reactivity of char and lowered its combustion activation energy. Furthermore, the combustion mechanisms of the char prepared from the O2/CO2 and O2/H2O atmospheres were investigated using the density functional theory (DFT). The simulation results illustrated that the combustion essence of char could be attributed to the migration of active atoms, the fracture of the benzene ring structure, and the reorganization of new systems. The addition of oxidizing agents weakened the conjugated components of the aromatic ring systems, promoting the successive decomposition of CO and NO. The results of this study can provide a theoretical basis for regulating the reaction atmosphere in the preheating process and promoting the development of clean combustion for high-rank coals.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

High Level Talents Funding Project of Hebei Province

Heilongjiang Touyan Innovation Team Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3