Light Harvesting Nanoprobe for Trace Detection of Hg2+ in Water

Author:

Chepak Aleksandr1,Balatskiy Denis1ORCID,Tutov Mikhail12,Mironenko Aleksandr1,Bratskaya Svetlana1ORCID

Affiliation:

1. Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russia

2. Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia

Abstract

The continuously increasing flow of toxic heavy metals to the environment due to intensive industrial activity and tightening requirements with regard to the content of metal ions in drinking and discharged waters urges the development of affordable and sensitive devices to the field control of pollutants. Here, we report a new thiated Rhodamine-lactam probe for Hg2+ detection and demonstrate how its sensitivity can be increased via the incorporation of the probe molecules into the optically transparent siloxane-acrylate coatings on polymethyl methacrylate and, alternatively, into the water-dispersible light-harvesting FRET nanoparticles (NPs), in which dye cations are separated by fluorinated tetraphenylborate anions. We have shown that the optimization of the FRET NPs composition had allowed it to reach the antenna effect of ~300 and fabricate “off/on” sensor for Hg2+ ion determination in aqueous solutions with the detection limit of ~100 pM, which is far below the maximum permissible concentration (MPC) of mercury in drinking water recommended by the World Health Organization. Although this work is more proof-of-concept than a ready-to-use analytical procedure, the suggested approaches to fabrication of the FRET NPs based on the popular rhodamine-lactam platform can be used as a background for the development of low-cost portable sensing devices for the extra-laboratory determination of hazardous metal ions.

Funder

Russian Foundation of Basic Research

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3