Theoretical Analysis on Heteroleptic Cu(I)-Based Complexes for Dye-Sensitized Solar Cells: Effect of Anchors on Electronic Structure, Spectrum, Excitation, and Intramolecular and Interfacial Electron Transfer

Author:

Xu Zhijie,Lu XiaoqingORCID,Li Yuanyuan,Wei Shuxian

Abstract

Two groups of heteroleptic Cu(I)-based dyes were designed and theoretically investigated by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. Different anchors were integrated into the dye skeleton to shed light on how the type of anchor influenced the electronic structure, absorption spectrum, electron excitation, and intramolecular and interfacial electron transfer of dyes. The results indicated that, compared with other dyes, the dyes with cyanoacrylic acid and nitric acid exhibited more appropriate electron distributions in frontier molecular orbitals (FMOs), lower HOMO (the highest occupied molecular orbital) –LUMO (the lowest unoccupied molecular orbital) energy gaps, broader absorption spectral ranges as well as improved spectral characteristics in the near-infrared region and better intramolecular electron transfer (IET) characteristics with more electrons transferred to longer distances, but smaller orbital overlap. Among all the studied Cu(I)-based dyes, B1 and P1 (with cyanoacrylic acid anchoring group) exhibited the best interface electronic structure parameters with a relatively short electron injection time (τinj) and large dipole moment (μnormal), which would have a positive effect on the open-circuit photovoltage (Voc) and short-circuit current density (Jsc), resulting in high power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Our findings are expected to provide a new insight into the designing and screening of high-performance dyes for DSSCs.

Funder

Shandong Natural Science Foundation, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3