Imidazole-Based Lithium Salt LiHDI as a Solid Electrolyte Interphase-Stabilising Additive for Lithium-Conducting Electrolytes

Author:

Broszkiewicz Marek1ORCID,Brzozowski Bartosz1,Trzeciak Tomasz1,Zalewska Aldona1,Ryl Jacek2ORCID,Niedzicki Leszek1ORCID

Affiliation:

1. Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland

2. Advanced Materials Center, Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Abstract

Lithium salt LiHDI (lithium 4,5-dicyano-2-(n-heptafluoropropyl)imidazolide) is proposed as a solid electrolyte interphase-stabilising additive for lithium-ion batteries, which can be added in a smaller amount than fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives. Electrolytes containing either lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI) or battery-standard LiPF6 were tested with various amounts of LiHDI additive. Chemical stability in the presence of water and the thermal stability of LiHDI are on par with LiTDI. LiHDI additive does not negatively affect the properties of electrolytes. Conductivity measurements of solutions, galvanostatic cycling of graphite-LiFePO4 cells at room temperature, cells’ cycling at 60 °C, internal cell resistance monitoring during cycling, and XPS analysis of electrodes’ surfaces after cycling have been performed. LiHDI, unlike the FEC-VC mixture, does not negatively affect the properties of the electrolyte. Cycling showed improved capacity retention with LiHDI additive with both graphite and LiFePO4 as capacity-limiting electrodes over samples without additives. At elevated temperatures, samples with LiHDI exhibited better capacity retention during cycling than those with FEC-VC. Internal cell resistance can be correlated with capacity retention. XPS results show changes in the composition of SEI depending on the composition of the electrolyte and the duration of cycling.

Funder

Warsaw University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3