Exposure Media and Nanoparticle Size Influence on the Fate, Bioaccumulation, and Toxicity of Silver Nanoparticles to Higher Plant Salvinia minima

Author:

Thwala MelusiORCID,Klaine Stephen,Musee Ndeke

Abstract

Silver nanoparticles (AgNPs) are favoured antibacterial agents in nano-enabled products and can be released into water resources where they potentially elicit adverse effects. Herein, interactions of 10 and 40 nm AgNPs (10-AgNPs and 40-AgNPs) with aquatic higher plant Salvinia minima at 600 µg/L in moderately hard water (MHW), MHW of raised calcium (Ca2+), and MHW containing natural organic matter (NOM) were examined. The exposure media variants altered the AgNPs’ surface properties, causing size-dependent agglomeration. The bio-accessibility in the ascending order was: NOM < MHW < Ca2+, was higher in plants exposed to 10-AgNPs, and across all exposures, accumulation was higher in roots compared to fronds. The AgNPs reduced plant growth and the production of chlorophyll pigments a and b; the toxic effects were influenced by exposure media chemistry, and the smaller 10-AgNPs were commonly the most toxic relative to 40-AgNPs. The toxicity pattern was linked to the averagely higher dissolution of 10-AgNPs compared to the larger counterparts. The scanning electron microscopy and X-ray fluorescence analytical techniques were found limited in examining the interaction of the plants with AgNPs at the low exposure concentration used in this study, thus challenging their applicability considering the even lower predicted environmental concentrations AgNPs.

Funder

United Nations Educational, Scientific and Cultural Organization

Department of Science and Innovation, South Africa

University of Pretoria

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3