Antibacterial Activity of Biosynthesized Selenium Nanoparticles Using Extracts of Calendula officinalis against Potentially Clinical Bacterial Strains

Author:

Hernández-Díaz José AORCID,Garza-García Jorge JO,León-Morales Janet MORCID,Zamudio-Ojeda Adalberto,Arratia-Quijada Jenny,Velázquez-Juárez GilbertoORCID,López-Velázquez Julio CORCID,García-Morales SoledadORCID

Abstract

The use of selenium nanoparticles (SeNPs) in the biomedical area has been increasing as an alternative to the growing bacterial resistance to antibiotics. In this research, SeNPs were synthesized by green synthesis using ascorbic acid (AsAc) as a reducing agent and methanolic extract of Calendula officinalis L. flowers as a stabilizer. Characterization of SeNPs was performed by UV-vis spectrophotometry, infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. SeNPs of 40–60 nm and spherical morphologies were obtained. The antibacterial activity of marigold extracts and fractions was evaluated by disk diffusion methodology. The evaluation of SeNPs at different incubation times was performed through the colony-forming unit (CFU) count, in both cases against Serratia marcescens, Enterobacter cloacae, and Alcaligenes faecalis bacteria. Partial antibacterial activity was observed with methanolic extracts of marigold leaves and flowers and total inhibition with SeNPs from 2 h for S. marcescens, 1 h for E. cloacae, and 30 min for A. faecalis. In addition, SeNPs were found to exhibit antioxidant activity. The results indicate that SeNPs present a potentiated effect of both antimicrobial and antioxidant activity compared to the individual use of marigold extracts or sodium selenite (Na2SeO3). Their application emerges as an alternative for the control of clinical pathogens.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3