Theoretical Investigations on the Sensing Mechanism of Phenanthroimidazole Fluorescent Probes for the Detection of Selenocysteine

Author:

Tang Zhe,Wang Xiaochen,Liu Runze,Zhou PanwangORCID

Abstract

The level of selenocysteine (Sec) in the human body is closely related to a variety of pathophysiological states, so it is important to study its fluorescence sensing mechanism for designing efficient fluorescent probes. Herein, we used time-dependent density functional theory to investigate the fluorescence sensing mechanism of phenanthroimidazole derivates A4 and B4 for the detection of Sec, which are proposed to be designed based on excited state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) mechanisms. The calculation results show that the fluorescence quenching mechanism of A4 and B4 is due to the photo-induced electron transfer (PET) process with the sulfonate group acts as the electron acceptor. Subsequently, A4 and B4 react with Sec, the sulfonate group is substituted by hydroxyl groups, PET is turned off, and significant fluorescence enhancement of the formed A3 and B3 is observed. The theoretical results suggest that the fluorescence enhancement mechanism of B3 is not based on ICT mechanism, and the charge transfer phenomenon was not observed by calculating the frontier molecular orbitals, and proved to be a local excitation mode. The reason for the fluorescence enhancement of A3 based on ESIPT is also explained by the calculated potential energy curves.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3