Design of TiO2-Surfactin Hybrid Systems with Multifunctional Properties

Author:

Ortelli Simona1ORCID,Vespignani Maurizio12ORCID,Zanoni Ilaria1ORCID,Blosi Magda1ORCID,Vineis Claudia3ORCID,Piancastelli Andreana1,Baldi Giovanni4ORCID,Dami Valentina4,Albonetti Stefania12ORCID,Costa Anna Luisa1ORCID

Affiliation:

1. CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, Italy

2. Department of Industrial Chemistry “Toso Montanari”, Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy

3. CNR-STIIMA, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing–Italian National Research Council, Corso Pella 16, 13900 Biella, Italy

4. Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana-Vinci, Italy

Abstract

In recent years, multifunctional inorganic−organic hybrid materials have been widely investigated in order to determine their potential synergetic, antagonist, or independent effects in terms of reactivity. The aim of this study was to design and characterize a new hybrid material by coupling well-known photocatalytic TiO2 nanoparticles with sodium surfactin (SS), a biosurfactant showing high binding affinity for metal cations as well as the ability to interact with and disrupt microorganisms’ cell membranes. We used both chemical and colloidal synthesis methodologies and investigated how different TiO2:SS weight ratios affected colloidal, physicochemical, and functional properties. We discovered a clear breaking point between TiO2 and SS single-component trends and identified different ranges of applicability by considering different functional properties such as photocatalytic, heavy metal sorption capacity, and antibacterial properties. At low SS contents, the photocatalytic properties of TiO2 are preserved (conversion of organic dye = 99% after 40 min), and the hybrid system can be used in advanced oxidation processes, taking advantage of the additional antimicrobial SS properties. At high SS contents, the TiO2 photoactivity is inhibited, and the hybrid can be usefully exploited as a UV blocker in cosmetics, avoiding undesired oxidative effects (UV adsorption in the range between 300–400 nm). Around the breaking point (TiO2:SS 1:1), the hybrid material preserves the high surface area of TiO2 (specific surface area around 180 m2/g) and demonstrates NOx depletion of up to 100% in 80 min, together with improved adhesion of hybrid antibacterial coating. The last design demonstrated the best results for the concurrent removal of inorganic, organic, and biological pollutants in water/soil remediation applications.

Funder

European Union

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3