In-Depth Method Investigation for Determination of Boron in Silicate Samples Using an Improved Boron–Mannitol Complex Digestion Method by Inductively Coupled Plasma Mass Spectrometry

Author:

Tan XijuanORCID,Zhou Ruili,Feng YonggangORCID,Liang Ting

Abstract

In this paper, a boron–mannitol complex wet acid digestion method proposed for the accurate determination of boron in silicate samples by inductively coupled plasma mass spectrometry (ICP-MS) was investigated in detail for the first time. With the addition of 50 μL of mannitol (2% wt.) into the mixture of 0.6 mL of concentrated HF and 30 μL of concentrated HNO3, the 50 mg of silicate sample was effectively decomposed after being heated overnight with optional pre-ultrasonic treatment. Following fluoride formation prevention by 8% HNO3 (wt.) and fluoride decomposition using 6% HCl (wt.), the samples were fluxed in 2.0 mL of 40% HNO3 (wt.) for 4 h and aged overnight. By diluting 1000-fold using 2% HNO3 (wt.) solution, the samples were directly quantified by an ICP-MS, showing boron recoveries of the standard materials including diabase W-2, basalt JB-2a, and rhyolite JR-2 in the range of 95.5–105.5% (n = 5). For this wet acid method, it was found that the contents of boron had no obvious difference under digestion temperatures of 65, 100, and 140 °C. It was also found that the ICP-MS quantification accuracy deteriorated at the mass of 11B when boron content was about 7250 ng yielding positive bias with average recoveries of 115.5–119.8% (n = 5), while the determination results remained unaffected at the mass of 10B. Furthermore, the digestion efficiency of boron by laboratory high-pressure closed digestion method was assessed. The boron recoveries with samples treated by the high-pressure closed digestion method were found to vary within 49.5–98.0% (n = 5) and even lowered down to 31.1% when skipping pressure relief procedure. The long-term quantification stability study showed that the boron content generally declined in one month for the high-pressure closed digestion method and exhibited no significant changes for the proposed method. By applying such an improved boron–mannitol complex digestion method, the boron concentration in the studied silicate standard materials were accurately determined, providing critical data for further boron isotope analyses and associated geochemical studies. This in-depth method investigation for silicate boron determination demonstrates the feasibility of this boron–mannitol complex strategy under a wide digestion temperature of 65–140 °C, and also sheds light on the extensive applications of boron as a geological tracer.

Funder

Natural Science Foundation, China

National Key Research and Development Project, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference30 articles.

1. Boron isotope geochemistry; an overview;Palmer;Rev. Mineral. Geochem.,1996

2. Primitive boron isotope composition of the mantle;Chaussidon;Science,1995

3. New experimental determination of Li and B partition coefficients during upper mantle melting;Ottolini;Contrib. Mineral. Petr.,2009

4. Boron content and isotopic composition of oceanic basalts: Geochemical and cosmochemical implications;Chaussidon;Earth Planet Sci. Lett.,1994

5. Boron: From cosmic scarcity to 300 minerals;Grew;Elements,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3