Preparation and Application of Polymer-Dispersed Liquid Crystal Film with Step-Driven Display Capability

Author:

Lin Hui12,Zhao Yuzhen1,Jiao Xiangke1,Gao Hong3,Guo Zhun1,Wang Dong2ORCID,Luan Yi2ORCID,Wang Lei4ORCID

Affiliation:

1. Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China

2. Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. Division of Material Engineering, China Academy of Space Technology, Beijing 100094, China

4. Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

Abstract

The realization of multifunctional advanced displays with better electro-optical properties is especially crucial at present. However, conventional integral full drive-based transparent display is increasingly failing to meet the demands of the day. Herein, partitioned polymerization as a novel preparation method was introduced innovatively into polymer-dispersed liquid crystals (PDLC) for realizing a step-driven display in agreement with fluorescent dye to solve the above drawback. At first, the utilization of fluorescent dye to endow the PDLC film with fluorescent properties resulted in a reduction in the saturation voltage of the PDLC from 39.7 V to 25.5 V and an increase in the contrast ratio from 58.4 to 96.6. Meanwhile, the experimental observations and theoretical considerations have elucidated that variation in microscopic pore size can significantly influence the electro-optical behavior of PDLC. Then, the step-driven PDLC film was fabricated through the exposure of different regions of the LC cell to different UV-light intensities, resulting in stepwise voltage–transmittance (V–T) responses of the PDLC film for the corresponding regions. Consequently, under appropriate driving voltages, the PDLC can realize three different states of total scattering, semi-transparent and total transparent, respectively. In addition, the PDLC film also embodied an outstanding anti-aging property and UV-shielding performance, which makes it fascinating for multifunctional advanced display applications.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

Natural Science Foundation of Shaanxi Provincial Department of Education

Science and technology plan project of Xi’an

National Natural Science Foundation of China

Xi’an Science and Technology Plan Project of Shaanxi Province

Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3