Abstract
The emergence and development of two-dimensional (2D) materials has provided a new direction for enhancing the thermoelectric (TE) performance due to their unique structural, physical and chemical properties. However, the TE performance measurement of 2D materials is a long-standing challenge owing to the experimental difficulties of precise control in samples and high demand in apparatus. Until now, there is no universal methodology for measuring the dimensionless TE figure of merit (ZT) (the core parameter for evaluating TE performance) of 2D materials systematically in experiments. Raman spectroscopy, with its rapid and nondestructive properties for probing samples, is undoubtedly a powerful tool for characterizing 2D materials as it is known as a spectroscopic ‘Swiss-Army Knife’. Raman spectroscopy can be employed to measure the thermal conductivity of 2D materials and expected to be a systematic method in evaluating TE performance, boosting the development of thermoelectricity. In this review, thermoelectricity, 2D materials, and Raman techniques, as well as thermal conductivity measurements of 2D materials by Raman spectroscopy are introduced. The prospects of obtaining ZT and testing the TE performance of 2D materials by Raman spectroscopy in the future are also discussed.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献