Novel Harmicines with Improved Potency against Plasmodium

Author:

Marinović Marina,Perković Ivana,Fontinha DianaORCID,Prudêncio MiguelORCID,Held Jana,Pessanha de Carvalho Lais,Tandarić TanaORCID,Vianello RobertORCID,Zorc BrankaORCID,Rajić ZrinkaORCID

Abstract

Harmicines represent hybrid compounds composed of β-carboline alkaloid harmine and cinnamic acid derivatives (CADs). In this paper we report the synthesis of amide-type harmicines and the evaluation of their biological activity. N-harmicines 5a–f and O-harmicines 6a–h were prepared by a straightforward synthetic procedure, from harmine-based amines and CADs using standard coupling conditions, 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo [4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU) and N,N-diisopropylethylamine (DIEA). Amide-type harmicines exerted remarkable activity against the erythrocytic stage of P. falciparum, in low submicromolar concentrations, which was significantly more pronounced compared to their antiplasmodial activity against the hepatic stages of P. berghei. Furthermore, a cytotoxicity assay against the human liver hepatocellular carcinoma cell line (HepG2) revealed favorable selectivity indices of the most active harmicines. Molecular dynamics simulations demonstrated the binding of ligands within the ATP binding site of PfHsp90, while the calculated binding free energies confirmed higher activity of N-harmicines 5 over their O-substituted analogues 6. Amino acids predominantly affecting the binding were identified, which provided guidelines for the further derivatization of the harmine framework towards more efficient agents.

Funder

Hrvatska Zaklada za Znanost

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference40 articles.

1. World Malaria Report 2019 https://apps.who.int/iris/bitstream/handle/10665/330011/9789241565721-eng.pdf?sequence=1&isAllowed=y

2. Comprehensive review on various strategies for antimalarial drug discovery

3. Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action

4. Expanding the Antimalarial Drug Arsenal—Now, But How?

5. https://www.ema.europa.eu/en/news/first-malaria-vaccine-receives-positive-scientific-opinion-ema

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3