Author:
El Abiad Chahrazad,Radi Smaail,Faustino Maria,Neves M.,Moura Nuno
Abstract
Porphyrins show great promise for future purification demands. This is largely due to their unique features as host binding molecules that can be modified at the synthetic level, and largely improved by their incorporation into inorganic based materials. In this study, we assessed the efficacy of a hybrid material obtained from the immobilization of 5,10,15,20-tetrakis(pentafluorophenyl)-porphyrin on silica surface to remove Pb(II), Cu(II), Cd(II), and Zn(II) ions from water. The new organic-inorganic hybrid adsorbent was fully characterized by adequate techniques and the results show that the hybrid exhibits good chemical and thermal stability. From batch assays, it was evaluated how the efficacy of the hybrid was affected by the pH, contact time, initial metal concentration, and temperature. The adsorption kinetic and isotherms showed to fit the recent developed fractal-like pseudo-second-order model and Langmuir–Freundlich model respectively. The highest adsorption capacities for Pb(II), Cu(II), Cd(II), and Zn(II) ions were 187.36, 125.17, 82.45, and 56.23 mg g−1, respectively, at pH 6.0 and 25 °C. This study also shows that metal cations from real river water samples can be efficient removed in the presence of the new adsorbent material.
Funder
Fundação para a Ciência e a Tecnologia
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献