CONSMI: Contrastive Learning in the Simplified Molecular Input Line Entry System Helps Generate Better Molecules

Author:

Qian Ying1ORCID,Shi Minghua1,Zhang Qian1ORCID

Affiliation:

1. School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, 3663 North Zhongshan Road, Putuo District, Shanghai 200062, China

Abstract

In recent years, the application of deep learning in molecular de novo design has gained significant attention. One successful approach involves using SMILES representations of molecules and treating the generation task as a text generation problem, yielding promising results. However, the generation of more effective and novel molecules remains a key research area. Due to the fact that a molecule can have multiple SMILES representations, it is not sufficient to consider only one of them for molecular generation. To make up for this deficiency, and also motivated by the advancements in contrastive learning in natural language processing, we propose a contrastive learning framework called CONSMI to learn more comprehensive SMILES representations. This framework leverages different SMILES representations of the same molecule as positive examples and other SMILES representations as negative examples for contrastive learning. The experimental results of generation tasks demonstrate that CONSMI significantly enhances the novelty of generated molecules while maintaining a high validity. Moreover, the generated molecules have similar chemical properties compared to the original dataset. Additionally, we find that CONSMI can achieve favorable results in classifier tasks, such as the compound–protein interaction task.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3