Cheminformatics Modeling of Gene Silencing for Both Natural and Chemically Modified siRNAs

Author:

Dong Xialan,Zheng Weifan

Abstract

In designing effective siRNAs for a specific mRNA target, it is critically important to have predictive models for the potency of siRNAs. None of the published methods characterized the chemical structures of individual nucleotides constituting a siRNA molecule; therefore, they cannot predict the potency of gene silencing by chemically modified siRNAs (cm-siRNA). We propose a new approach that can predict the potency of gene silencing by cm-siRNAs, which characterizes each nucleotide (NT) using 12 BCUT cheminformatics descriptors describing its charge distribution, hydrophobic and polar properties. Thus, a 21-NT siRNA molecule is described by 252 descriptors resulting from concatenating all the BCUT values of its composing nucleotides. Partial Least Square is employed to develop statistical models. The Huesken data (2431 natural siRNA molecules) were used to perform model building and evaluation for natural siRNAs. Our results were comparable with or superior to those from Huesken’s algorithm. The Bramsen dataset (48 cm-siRNAs) was used to build and test the models for cm-siRNAs. The predictive r2 of the resulting models reached 0.65 (or Pearson r values of 0.82). Thus, this new method can be used to successfully model gene silencing potency by both natural and chemically modified siRNA molecules.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3