Abstract
Gaining insight into the pharmacology of ligand engagement with G-protein coupled receptors (GPCRs) under biologically relevant conditions is vital to both drug discovery and basic research. NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) monitoring competitive binding between fluorescent tracers and unmodified test compounds has emerged as a robust and sensitive method to quantify ligand engagement with specific GPCRs genetically fused to NanoLuc luciferase or the luminogenic HiBiT peptide. However, development of fluorescent tracers is often challenging and remains the principal bottleneck for this approach. One way to alleviate the burden of developing a specific tracer for each receptor is using promiscuous tracers, which is made possible by the intrinsic specificity of BRET. Here, we devised an integrated tracer discovery workflow that couples machine learning-guided in silico screening for scaffolds displaying promiscuous binding to GPCRs with a blend of synthetic strategies to rapidly generate multiple tracer candidates. Subsequently, these candidates were evaluated for binding in a NanoBRET ligand-engagement screen across a library of HiBiT-tagged GPCRs. Employing this workflow, we generated several promiscuous fluorescent tracers that can effectively engage multiple GPCRs, demonstrating the efficiency of this approach. We believe that this workflow has the potential to accelerate discovery of NanoBRET fluorescent tracers for GPCRs and other target classes.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献