Smart Pellets for Controlled Delivery of 5-Fluorouracil

Author:

Bayan Mohammad F.ORCID,Jaradat AbdolelahORCID,Alyami Mohammad H.ORCID,Naser Abdallah Y.ORCID

Abstract

This work aimed to develop a new one-pot and readily scaled-up formulation capable of retaining 5-fluorouracil and prolonging its release to obtain a site-specific medication delivery for the potential treatment of colorectal cancer. Six polymer-based formulations were successfully produced using a thermal bulk polymerization method and loaded with 5-fluorouracil, which is a chemotherapeutic agent used in the treatment of colorectal carcinoma. The pellets produced were characterized by measuring the glass transition temperature, tensile strength, Young’s modulus, and tensile elongation at break. Studies on in vitro swelling and release were carried out in phosphate-buffered saline to evaluate the behaviour of the developed system. The Young’s modulus, glass transition temperature, and tensile strength all increased significantly as the crosslinker concentration increased, but the fracture strain value reduced significantly. The in vitro swelling profile of the produced formulations was significantly reduced by increasing crosslinking density. Less than 27% cumulative drug release was achieved for all formulations after 5 h of starting the release study. The highest cumulative drug release reached after 24 h was 69%. The developed drug delivery system demonstrated the ability to delay the release of 5-fluorouracil in upper gastrointestinal tract-mimicking conditions, while permitting its release in a controlled way afterward, which makes it promising for the potential delivery of 5-fluorouracil to the colon.

Funder

Philadelphia University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3