Structure-Based Molecular Networking for the Discovery of Anti-HBV Compounds from Saussurea lappa (Decne.) C.B Clarke

Author:

Wu Tao,Yan Xin-Jian,Yang Tian-Rong,Wang Yun-Fen,He Jing-Yi,Feng Yang,Su Li-Hua,Chen Hao,Xu MinORCID

Abstract

It is a crucial to find target compounds in natural product research. This study presents a concept of structure-guided isolation to find candidate active molecules from herbs. We establish a process of anti-viral sesquiterpene networking. An analysis of the networking suggested that new anti-HBV sesquiterpene may be attributable to eudesmane-, guaiane-, cadinane-, germacane- and bisabolane-type sesquiterpenes. In order to evaluate the efficiency of the structure-based molecular networking, ethanol extract of Saussurea lappa (Decne.) C.B Clarke was investigated, which led to the isolation of two guaiane-type (1 and 14), ten eudesmane-type (2–5 and 8–13), two chain (6 and 7) and one germacrane-type (15) sesquiterpenes, including seven new ones, lappaterpenes A–G (1–7), which are reported on herein. The absolute configurations of the new compounds were established by coupling constants, calculated ECD and ROESY correlations, as well as comparisons of optical rotation values with those of known compounds. The absolute configuration of compound 2 was further confirmed by X-ray diffraction. Compounds 1–15 were evaluated for their potency against hepatitis B virus. Compounds 4, 6, 7 and 9 showed effect on HBsAg with inhibition ratios of more than 40% at 30 μM concentrations. Compounds 14 and 15 inhibited HBsAg secretion with the values of IC50 0.73 ± 0.18 and 1.43 ± 0.54 μM, respectively. Structure-based molecular networking inspired the discovery of target compounds.

Funder

National Natural Science Foundation of China

Ronald J Quinn AM Academician Workstation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3