Distinction and Quantification of Noncovalent Dispersive and Hydrophobic Effects

Author:

Schneider Hans-Jörg1ORCID

Affiliation:

1. FR Organische Chemie, Universität des Saarlandes, D 66123 Saarbrücken, Germany

Abstract

The possibilities of comparing computational results of noncovalent interactions with experimental data are discussed, first with respect to intramolecular interactions. For these a variety of experimental data such as heats of formation, crystal sublimation heats, comparison with energy minimized structures, and spectroscopic data are available, but until now largely have not found widespread application. Early force field and QM/MP2 calculations have already shown that the sublimation heats of hydrocarbons can be predicted with an accuracy of ±1%. Intermolecular interactions in solution or the gas phase are always accompanied by difficult to compute entropic contributions, like all associations between molecules. Experimentally observed T∆S values contribute 10% to 80% of the total ∆G, depending on interaction mechanisms within the complexes, such as, e.g., hydrogen bonding and ion pairing. Free energies ∆G derived from equilibrium measurements in solution allow us to define binding increments ∆∆G, which are additive and transferable to a variety of supramolecular complexes. Data from more than 90 equilibrium measurements of porphyrin receptors in water indicate that small alkanes do not bind to the hydrophobic flat surfaces within a measuring limit of ∆G = ±0.5 kJ/mol, and that 20 functions bearing heteroatoms show associations by dispersive interactions with up to ∆G = 8 kJ/mol, roughly as a function of their polarizability. Aromatic systems display size-dependent affinities ∆G as a linear function of the number of π-electrons.

Funder

Deutsche Forschungsgemeinschaft

Volkswagen Foundation

Alexander von Humboldt foundation

Publisher

MDPI AG

Reference115 articles.

1. Dispersive interactions in solution complexes;Schneider;Acc. Chem. Res.,2015

2. Non-covalent interactions in biomacromolecules;Cerny;Phys. Chem. Chem. Phys.,2007

3. Context-Dependent Significance of London Dispersion;Gravillier;Acc. Chem. Res.,2023

4. See Special issue “Dispersion Interactions in Chemistry” in Acc. Chem. Res. 2023, 25.

5. Dispersion Interactions in Condensed Phases and inside Molecular Containers;Assaf;Acc Chem. Res.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3