Adsorption of O2 on the Preferred -O-Au Sites of Small Gold Oxide Clusters: Charge-dependent Interaction and Activation

Author:

Huang Lulu1ORCID,Liu Wen1,Xing Xiaopeng1

Affiliation:

1. Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, China

Abstract

Decades of research have illuminated the significant roles of gold/gold oxide clusters in small molecule catalytic oxidation. However, many fundamental questions, such as the actual sites to adsorb and activate O2 and the impact of charge, remain unanswered. Here, we have utilized an improved genetic algorithm program coupled with the DFT method to systematically search for the structures of Au1–5Ox−/+/0 (x = 1–4) and calculated binding interactions between Au1–5Ox−/+/0 (x = 1–2) and O2, aiming to determine the active sites and to elucidate the impact of different charge states in gold oxide systems. The results revealed that the reactivity of all three kinds of small gold oxide clusters toward O2 is strongly site-dependent, with clusters featuring an -O-Au site exhibiting a preference for adsorption. The charges on small gold oxide clusters significantly impact the interaction strength and the activation degree of adsorbed O2: in the case of anionic cluster, the interaction between O2 and the -O-Au sites leads to a chemical reaction involving electron transfer, thereby significantly activating O2; in neutral and cationic clusters, the adsorption of O2 on their -O-Au sites can be viewed as an electrostatic interaction. Pointedly, for cationic clusters, the highly concentrated positive charge on the Au atom of the -O-Au sites can strongly adsorb but hardly activate the adsorbed O2. These results have certain reference points for understanding the gold oxide interfaces and the improved catalytic oxidation performance of gold-based systems in the presence of atomic oxygen species.

Funder

the National Natural Science Foundation of China

the Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3