Systematic Analysis of Covalent and Allosteric Protein Kinase Inhibitors

Author:

Xerxa Elena1,Laufkötter Oliver1,Bajorath Jürgen1ORCID

Affiliation:

1. LIMES Program Unit Chemical Biology and Medicinal Chemistry, Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115 Bonn, Germany

Abstract

In drug discovery, protein kinase inhibitors (PKIs) are intensely investigated as drug candidates in different therapeutic areas. While ATP site-directed, non-covalent PKIs have long been a focal point in protein kinase (PK) drug discovery, in recent years, there has been increasing interest in allosteric PKIs (APKIs), which are expected to have high kinase selectivity. In addition, as compounds acting by covalent mechanisms experience a renaissance in drug discovery, there is also increasing interest in covalent PKIs (CPKIs). There are various reasons for this increasing interest such as the anticipated high potency, prolonged residence times compared to non-competitive PKIs, and other favorable pharmacokinetic properties. Due to the popularity of PKIs for therapeutic intervention, large numbers of PKIs and large volumes of activity data have accumulated in the public domain, providing a basis for large-scale computational analysis. We have systematically searched for CPKIs containing different reactive groups (warheads) and investigated their potency and promiscuity (multi-PK activity) on the basis of carefully curated activity data. For seven different warheads, sufficiently large numbers of CPKIs were available for detailed follow-up analysis. For only three warheads, the median potency of corresponding CPKIs was significantly higher than of non-covalent PKIs. However, for CKPIs with five of seven warheads, there was a significant increase in the median potency of at least 100-fold compared to PKI analogues without warheads. However, in the analysis of multi-PK activity, there was no general increase in the promiscuity of CPKIs compared to non-covalent PKIs. In addition, we have identified 29 new APKIs in X-ray structures of PK-PKI complexes. Among structurally characterized APKIs, 13 covalent APKIs in complexes with five PKs are currently available, enabling structure-based investigation of PK inhibition by covalent-allosteric mechanisms.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3