Development and Validation of a New UFLC–MS/MS Method for the Detection of Organophosphate Pesticide Metabolites in Urine

Author:

Kumar Dileshwar12ORCID,Sinha Sukesh Narayan1ORCID,Vasudev Kasturi1

Affiliation:

1. Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India

2. Department of Biochemistry, Osmania University, Hyderabad 500007, Telangana, India

Abstract

To monitor human exposure to pesticides, experts commonly measure their metabolites in urine, particularly dialkyl phosphates (DAPs), which include diethyl phosphate (DEP), Diethyl thiophosphate (DETP), diethyl dithiophosphate (DEDTP), dimethyl phosphate (DMP), dimethyl thiophosphate (DMTP) and dimethyl dithiophosphate (DMDTP)to monitor the metabolites of organophosphates. These DAP metabolites are a urinary biomarker for assessing pesticide exposure and potential health risks. This study presented a new screening method combining ultrafast liquid chromatography with tandem mass spectrometry (UFLC–MS/MS) to detect six DAP metabolites in human urine. The study also compared standard sample extraction methods, namely, liquid–liquid extraction (LLE); quick, easy, cheap, effective, ruggedand safe (QuEChERS); and lyophilization. After a comprehensive analysis of the methods used to extract the analytes, including recovery rate, repeatability and reproducibility, the liquid–liquid extraction (LLE) method was found to be the best. It had a high recovery rate, was easy to handle, required less sample volume and had a short extraction time. Therefore, the LLE method was chosen for further analysis. The results showed excellent performance with high recoveries between 93% and 102%, precise repeatability (RSD) between 0.62% and 5.46% and acceptable reproducibility values (RSD) between 0.80% and 11.33%. The method also had limits of detection (LOD) ranging from 0.0201 ng/mL to 0.0697 ng/mL and limits of quantification (LOQ) ranging from 0.0609 ng/mL to 0.2112 ng/mL. Furthermore, the UFLC–MS/MS method was validated based on the SANTE guidance and successfully analyzed 150 urine samples from farmers and non-farmers. This validated method proved useful for biomonitoring studies focusing on OP pesticide exposure. It offers several advantages, such as a reduced need for samples, chemicals and materials, and a shorter analysis time. The method is sensitive and selective in detecting metabolites in human urine, making it a valuable approach for the practical and efficient assessment of pesticide exposure.

Funder

Department of Health Research Minister of Health and Family Welfare (MoHFW), New Delhi

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3