Incorporation of a Boron–Nitrogen Covalent Bond Improves the Charge-Transport and Charge-Transfer Characteristics of Organoboron Small-Molecule Acceptors for Organic Solar Cells

Author:

Yang Jie,Ding Wei-Lu,Li Quan-Song,Li Ze-Sheng

Abstract

An organoboron small-molecular acceptor (OSMA) MB←N containing a boron–nitrogen coordination bond (B←N) exhibits good light absorption in organic solar cells (OSCs). In this work, based on MB←N, OSMA MB-N, with the incorporation of a boron–nitrogen covalent bond (B-N), was designed. We have systematically investigated the charge-transport properties and interfacial charge-transfer characteristics of MB-N, along with MB←N, using the density functional theory (DFT) and the time-dependent density functional theory (TD-DFT). Theoretical calculations show that MB-N can simultaneously boost the open-circuit voltage (from 0.78 V to 0.85 V) and the short-circuit current due to its high-lying lowest unoccupied molecular orbital and the reduced energy gap. Moreover, its large dipole shortens stacking and greatly enhances electron mobility by up to 5.91 × 10−3 cm2·V−1·s−1. Notably, the excellent interfacial properties of PTB7-Th/MB-N, owing to more charge transfer states generated through the direct excitation process and the intermolecular electric field mechanism, are expected to improve OSCs performance. Together with the excellent properties of MB-N, we demonstrate a new OSMA and develop a new organoboron building block with B-N units. The computations also shed light on the structure–property relationships and provide in-depth theoretical guidance for the application of organoboron photovoltaic materials.

Funder

National Natural Science Foundation of China

Beijing Key Laboratory for Chemical Power Source and Green Catalysis

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3