Magnetic Resonance Methods as a Prognostic Tool for the Biorelevant Behavior of Xanthan Tablets

Author:

Mikac Urša,Kristl JulijanaORCID

Abstract

Hydrophilic matrix tablets with controlled drug release have been used extensively as one of the most successful oral drug delivery systems for optimizing therapeutic efficacy. In this work, magnetic resonance imaging (MRI) is used to study the influence of various pHs and mechanical stresses caused by medium flow (at rest, 80, or 150 mL/min) on swelling and on pentoxifylline release from xanthan (Xan) tablets. Moreover, a bimodal MRI system with simultaneous release testing enables measurements of hydrogel thickness and drug release, both under the same experimental conditions and at the same time. The results show that in water, the hydrogel structure is weaker and less resistant to erosion than the Xan structure in the acid medium. Different hydrogel structures affect drug release with erosion controlled release in water and diffusion controlled release in the acid medium. Mechanical stress simulating gastrointestinal contraction has no effect on the hard hydrogel in the acid medium where the release is independent of the tested stress, while it affects the release from the weak hydrogel in water with faster release under high stress. Our findings suggest that simultaneous MR imaging and drug release from matrix tablets together provide a valuable prognostic tool for prolonged drug delivery design.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3