N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity

Author:

Krátký MartinORCID,Baranyai ZsuzsaORCID,Štěpánková ŠárkaORCID,Svrčková Katarína,Švarcová Markéta,Stolaříková Jiřina,Horváth Lilla,Bősze SzilviaORCID,Vinšová Jarmila

Abstract

Based on the isosterism concept, we have designed and synthesized homologous N-alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C1 to C18) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman’s method. All the hydrazinecarboxamides revealed a moderate inhibition of both AChE and BuChE, with IC50 values of 27.04–106.75 µM and 58.01–277.48 µM, respectively. Some compounds exhibited lower IC50 for AChE than the clinically used drug rivastigmine. N-Tridecyl/pentadecyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides were identified as the most potent and selective inhibitors of AChE. For inhibition of BuChE, alkyl chain lengths from C5 to C7 are optimal substituents. Based on molecular docking study, the compounds may work as non-covalent inhibitors that are placed in a close proximity to the active site triad. The compounds were evaluated against Mycobacterium tuberculosis H37Rv and nontuberculous mycobacteria (M. avium, M. kansasii). Reflecting these results, we prepared additional analogues of the most active carboxamide (n-hexyl derivative 2f). N-Hexyl-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-amine (4) exhibited the lowest minimum inhibitory concentrations within this study (MIC ≥ 62.5 µM), however, this activity is mild. All the compounds avoided cytostatic properties on two eukaryotic cell lines (HepG2, MonoMac6).

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3