Synthesis of Some Mono- and Disaccharide-Grafting Phthalazine Derivatives and Some New Se-Nucleoside Analogues: Antibacterial Properties, Quantum Chemical Calculations, and Cytotoxicity

Author:

El-Shamy I. E.,Hleli E.,Alsheikh A. A.,Yawer M. A.,El-Hashash M. A.,Dybal J.ORCID,Abdel-Mohsen A. M.ORCID

Abstract

A highly efficient and versatile synthetic approach for the synthesis of 4-(pyren-1-ylmethyl)-1-(d-glycosyloxy) phthalazine nucleosides 11a,b, 13, β-S-nucleosides 16, 18, 20, and acyclo C-nucleosides 23a,b, 24, 25 and 27a–f was described and fully characterized. Furthermore, a series of desired new nucleoside analogues containing Se of 4-(pyren-1-ylmethyl) phthalazine-1(2H)-selenone 28–33 were synthesized. The structures of all reported compounds were confirmed by IR, 1H-NMR, 13C-NMR, MS and elemental analysis. All compounds have been screened for their antibacterial and antifungal activities. Maximum activity was shown by 20 and 33a comparable to the standard drugs with lower toxicity. The cytotoxicity of the selected compound was measured and evaluated. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital was calculated using theoretical computations to reflect the chemical reactivity and kinetic stability of the synthesized compounds. Using density functional theory (DFT), electronic parameters such as the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) and the molecular electrostatic potential (MEPS) were calculated. On the basis of different studied structures, these properties were computed in order to elucidate the chemical reactivity and the kinetic stability. Obviously, the band gap energy (Eg) of structures studied reveals that the lowest band gap obtained for the structure 16-a indicates that it has the highest chemical reactivity and lowest kinetic stability.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3