Abstract
The validation of a sensitive and reliable analytical procedure for the determination of pharmaceutical and personal care products (PPCPs) in solid environmental samples is reported in this study. Initially, two types of derivatization were used for the identification of the 13 target PPCP standards (acylation and silylation), but silylation proved to be better in sensitivity as it detected all of the analytes under investigation. Samples were extracted using an ultrasonicator, concentrated and re-dissolved in 100 mL water, then cleaned-up using C18 cartridges before silylation that preceded the Gas chromatography-mass Spectrometry detector (GC–MS) analyses. The optimized method provided a linear response over the range of 10–400 ng·g−1 with r2 > 0.992 and satisfactory recoveries (>45.6%) for the 13 compounds of interest. In this study, the variation of the sonication temperature, type of organic solvent for extraction, and types of cartridge were used to optimize the extraction procedure. A good repeatability (within day) and reproducibility (between days) with a relative standard deviation (RSD) that was equal or less than 13% for all the PPCPs were achieved with the developed extraction procedures for the irrigated soil and sewage sludge samples. The limits of detection (LODs) of the tested compounds varied from 0.1 ng·g−1 (aspirin) to 1.4 ng·g−1 (doxycycline) and from 0.1 ng·g−1 (codiene) to 1.7 ng·g−1 (doxycycline) for soils and sewage sludge samples, respectively. The method was successfully applied to the sludge of wastewater treatment plants and soils of an irrigated golf course. Among the tested emerging pollutants, paracetamol showed the highest concentration value of 98.9 ng·g−1 in the sludge, and for the irrigated soil (0 to 10 cm), the concentration ranged from 1.16 ng·g−1 (aspirin) to 8.57 ng·g−1 (ibuprofen).
Funder
South Africa Medical Research Council
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献