Abstract
Essential oils are complex mixtures of strongly active compounds, very volatile and sensitive to light, oxygen, moisture and temperature. Loading inside nanocarriers can be a strategy to increase their stability and successfully use them in therapy. In the present study, a commercial Melissa officinalis L. (Lamiaceae) essential oil (MEO) was analyzed by gas chromatography-mass spectrometry, loaded inside glycerosomes (MEO-GS) and evaluated for its anti-herpetic activity against HSV type 1. MEO-GS analyses were prepared by the thin layer evaporation method and they were characterized by light scattering techniques, determining average diameter, polydispersity index and ζ-potential. By transmission electron microscopy, MEO-GS appeared as small nano-sized vesicles with a spherical shape. MEO encapsulation efficiency inside glycerosomes, in terms of citral and β-caryophyllene, was found to be ca. 63% and 76% respectively, and MEO release from glycerosomes, performed by dialysis bag method, resulted in less than 10% within 24h. In addition, MEO-GS had high chemical and physical stability during 4 months of storage. Finally, MEO-GS were very active in inhibiting HSV type 1 infection of mammalian cells in vitro, without producing cytotoxic effects. Thus, MEO-GS could be a promising tool in order to provide a suitable anti-herpetic formulation.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献