H2S/Butane Dual Gas Sensing Based on a Hydrothermally Synthesized MXene Ti3C2Tx/NiCo2O4 Nanocomposite

Author:

Sadaf Shama1,Zhang Hongpeng1ORCID,Akhtar Ali23ORCID

Affiliation:

1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China

2. Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China

3. Zhejiang Institute of Photo-Electronics, Zhejiang Normal University, Jinhua 321004, China

Abstract

Real-time sensing of hydrogen sulfide (H2S) at room temperature is important to ensure the safety of humans and the environment. Four kinds of different nanocomposites, such as MXene Ti3C2Tx, Ti3AlC2, WS2, and MoSe2/NiCo2O4, were synthesized using the hydrothermal method in this paper. Initially, the intrinsic properties of the synthesized nanocomposites were studied using different techniques. P-type butane and H2S-sensing behaviors of nanocomposites were performed and analyzed deeply. Four sensor sheets were fabricated using a spin-coating method. The gas sensor was distinctly part of the chemiresistor class. The MXene Ti3C2Tx/NiCo2O4-based gas sensor detected the highest response (16) toward 10 ppm H2S at room temperature. In comparison, the sensor detected the highest response (9.8) toward 4000 ppm butane at 90 °C compared with the other three fabricated sensors (Ti3AlC2, WS2, and MoSe2/NiCo2O4). The MXene Ti3C2Tx/NiCo2O4 sensor showed excellent responses, minimum limits of detection (0.1 ppm H2S and 5 ppm butane), long-term stability, and good reproducibility compared with the other fabricated sensors. The highest sensing properties toward H2S and butane were accredited to p–p heterojunctions, higher BET surface areas, increased oxygen species, etc. These simply synthesized nanocomposites and fabricated sensors present a novel method for tracing H2S and butane at the lowest concentration to prevent different gas-exposure-related diseases.

Funder

National Natural Science Foundation of China

Dalian Science Technology Innovation Fund

Liaoning Revitalization Talents Program

Fundamental Research Funds for the Central Universities

Technology Innovation Foundation of Dalian

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3