Derivatization-Enhanced Analysis of Glucocorticoids for Structural Characterization by Gas Chromatography-Orbitrap High-Resolution Mass Spectrometry

Author:

Ge Yuqi1,Liu Mengpan1,Deng Xiaojun1ORCID,Liao Lei1ORCID

Affiliation:

1. Shanghai Anti-Doping Laboratory, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China

Abstract

Glucocorticoids are classified in section S9 of the Prohibited List of the World Anti-Doping Agency, due to a potential risk to improving physical performance and causing harm to the health of athletes. Based on the similar physiological actions of glucocorticoids, both differentiating known glucocorticoids and identifying unknown glucocorticoids are important for doping control. Gas chromatography coupled with mass spectrometry plays an important role in structural characterization because of abundant structural diagnostic ions produced by electron ionization. It also provides a chance to study the fragmentation patterns. Thus, an enhanced derivatization procedure was optimized to produce trimethylsilylated glucocorticoids and structural diagnostic ions of nineteen trimethylsilylated glucocorticoids were obtained by gas chromatography-orbitrap high-resolution mass spectrometry. In our study, glucocorticoids were classified as: 3-keto-4-ene, 1,4-diene-3-keto, 3α-hydroxy with saturated A-ring, 21-hydroxy-20-keto and halo substituent glucocorticoids based on their structural difference. Structural diagnostic ions that contributed to structural characterization were specifically presented and the fragment patterns were demonstrated according to the above categories. This study not only gave new insights into the structural characterization of these glucocorticoids but also provided evidence for tracing unknown glucocorticoids or chemically modified molecules.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3