Effect of Process Parameters on the Graphite Expansion Produced by a Green Modification of the Hummers Method

Author:

Tarango-Rivero Gabriela,Mendoza-Duarte José M.,Santos-Beltrán Audel,Estrada-Guel IvanovichORCID,Garay-Reyes Carlos G.,Pizá-Ruiz PedroORCID,Gómez-Esparza Cynthia D.ORCID,Rocha-Rangel EnriqueORCID,Martínez-Sánchez RobertoORCID

Abstract

Adsorption stand out among other standard techniques used for water treatment because of its remarkable simplicity, easy operation, and high removal capability. Expanded graphite has been selected as a promising agent for oil spill adsorption, but its production involves the generation of corrosive remnants and massive amounts of contaminated washing waters. Although the advantageous use of the H2O2–H2SO4 mixture was described in 1978, reported works using this method are scarce. This work deals with the urgent necessity for the development of alternative chemical routes decreasing their environmental impact (based on green chemistry concepts), presenting a process for expanded graphite production using only two intercalation chemicals, reducing the consumption of sulfuric acid to only 10% and avoiding the use of strong oxidant salts (both environmentally detrimental). Three process parameters were evaluated: milling effect, peroxide concentration, and microwave expansion. Some remarkable results were obtained following this route: high specific volumes elevated oil adsorption rate exhibiting a high oil–water selectivity and rapid adsorption. Furthermore, the recycling capability was checked using up to six adsorption cycles. Results showed that milling time reduces the specimen’s expansion rate and oil adsorption capacity due to poor intercalant insertion and generation of small particle sizes.

Funder

CIMAV internal project 2022

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3