Novel Xanomeline-Containing Bitopic Ligands of Muscarinic Acetylcholine Receptors: Design, Synthesis and FRET Investigation

Author:

Matera Carlo1ORCID,Kauk Michael2,Cirillo Davide1ORCID,Maspero Marco1ORCID,Papotto Claudio1ORCID,Volpato Daniela3,Holzgrabe Ulrike3ORCID,De Amici Marco1ORCID,Hoffmann Carsten2,Dallanoce Clelia1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy

2. Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Hans Knoell Str. 2, 07745 Jena, Germany

3. Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

Abstract

In the last few years, fluorescence resonance energy transfer (FRET) receptor sensors have contributed to the understanding of GPCR ligand binding and functional activation. FRET sensors based on muscarinic acetylcholine receptors (mAChRs) have been employed to study dual-steric ligands, allowing for the detection of different kinetics and distinguishing between partial, full, and super agonism. Herein, we report the synthesis of the two series of bitopic ligands, 12-Cn and 13-Cn, and their pharmacological investigation at the M1, M2, M4, and M5 FRET-based receptor sensors. The hybrids were prepared by merging the pharmacophoric moieties of the M1/M4-preferring orthosteric agonist Xanomeline 10 and the M1-selective positive allosteric modulator 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone) 11. The two pharmacophores were connected through alkylene chains of different lengths (C3, C5, C7, and C9). Analyzing the FRET responses, the tertiary amine compounds 12-C5, 12-C7, and 12-C9 evidenced a selective activation of M1 mAChRs, while the methyl tetrahydropyridinium salts 13-C5, 13-C7, and 13-C9 showed a degree of selectivity for M1 and M4 mAChRs. Moreover, whereas hybrids 12-Cn showed an almost linear response at the M1 subtype, hybrids 13-Cn evidenced a bell-shaped activation response. This different activation pattern suggests that the positive charge anchoring the compound 13-Cn to the orthosteric site ensues a degree of receptor activation depending on the linker length, which induces a graded conformational interference with the binding pocket closure. These bitopic derivatives represent novel pharmacological tools for a better understanding of ligand-receptor interactions at a molecular level.

Funder

The University of Milan financed the doctoral position of M.M. and C.P.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3