Affiliation:
1. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
Abstract
Applications of clathrate hydrate require fast formation kinetics of it, which is the long-standing technological bottleneck due to mass transfer and heat transfer limitations. Although several methods, such as surfactants and mechanical stirring, have been employed to accelerate gas hydrate formation, the problems they bring are not negligible. Recently, a new water-in-air dispersion stabilized by hydrophobic nanosilica, dry water, has been used as an effective promoter for hydrate formation. In this review, we summarize the preparation procedure of dry water and factors affecting the physical properties of dry water dispersion. The effect of dry water dispersion on gas hydrate formation is discussed from the thermodynamic and kinetic points of view. Dry water dispersion shifts the gas hydrate phase boundary to milder conditions. Dry water increases the gas hydrate formation rate and improves gas storage capacity by enhancing water-guest gas contact. The performance comparison and synergy of dry water with other common hydrate promoters are also summarized. The self-preservation effect of dry water hydrate was investigated. Despite the prominent effect of dry water in promoting gas hydrate formation, its reusability problem still remains to be solved. We present and compare several methods to improve its reusability. Finally, we propose knowledge gaps in dry water hydrate research and future research directions.
Funder
Natural Sciences and Engineering Research Council
China Scholarship Council (CSC) and the University of Alberta
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献