Schiff Base Functionalized Cellulose: Towards Strong Support-Cobalt Nanoparticles Interactions for High Catalytic Performances

Author:

Aitbella Hicham12,Belachemi Larbi1,Merle Nicolas2ORCID,Zinck Philippe2ORCID,Kaddami Hamid13ORCID

Affiliation:

1. IMED-Lab, Team of Organometallic and Macromolecular Chemistry-Composite Materials, Department of Chemical Sciences, Faculty of Science and Technology, Cadi Ayyad University, Marrakech 40000, Morocco

2. Unité de Catalyse et Chimie du Solide, UMR 8181, University Lille, CNRS, Centrale Lille, University Artois, F-59650 Villeneuve d’Ascq, France

3. Sustainable Materials Research Center (SusMat-RC), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco

Abstract

A new hybrid catalyst consisting of cobalt nanoparticles immobilized onto cellulose was developed. The cellulosic matrix is derived from date palm biomass waste, which was oxidized by sodium periodate to yield dialdehyde and was further derivatized by grafting orthoaminophenol as a metal ion complexing agent. The new hybrid catalyst was characterized by FT-IR, solid-state NMR, XRD, SEM, TEM, ICP, and XPS. The catalytic potential of the nanocatalyst was then evaluated in the catalytic hydrogenation of 4-nitrophenol to 4-aminophenol under mild experimental conditions in aqueous medium in the presence of NaBH4 at room temperature. The reaction achieved complete conversion within a short period of 7 min. The rate constant was calculated to be K = 8.7 × 10−3 s−1. The catalyst was recycled for eight cycles. Furthermore, we explored the application of the same catalyst for the hydrogenation of cinnamaldehyde using dihydrogen under different reaction conditions. The results obtained were highly promising, exhibiting both high conversion and excellent selectivity in cinnamyl alcohol.

Funder

Campus France

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3