Salidroside Improves Bone Histomorphology and Prevents Bone Loss in Ovariectomized Diabetic Rats by Upregulating the OPG/RANKL Ratio

Author:

Zheng Hongxing,Qi Shanshan,Chen Chen

Abstract

Postmenopausal diabetic women have a high risk of fractures. Salidroside has preventive effects on estrogen deficiency-induced osteoporosis and has hypoglycemic effects on diabetes in rats. However, whether salidroside inhibits bone loss in postmenopausal diabetic patients is still unknown. Here, we established a rat model of osteoporosis to investigate the protective effects of salidroside on bone loss induced by ovariectomy combined with diabetes, also investigating the underlying mechanisms. Two-month-old female Sprague-Dawley rats were divided into three equal groups (10 rats in each group): control group (with sham operation, treated with drug vehicle); OVX/T1DM group (ovariectomized diabetic rats); OVX/T1DM-SAL group, comprising ovariectomized diabetic rats treated with salidroside (20 mg/kg body weight) by gavage. The results showed that after 60 consecutive days of treatment, the bone mineral density (BMD) of OVX/T1DM-SAL increased significantly compared with the OVX/T1DM group (p < 0.01). The level of serum bone turnover markers, including alkaline phosphatase (ALP), cross linked c-telopeptide of type I collagen (CTX-1), osteocalcin, N-terminal propeptide of type I procollagen (PINP), and tartrate-resistant acid phosphatase 5b (TRACP 5b) were all increased in the OVX/T1DM group compared with the control (p < 0.01), and those were decreased by salidroside treatment. Meanwhile, the bone histopathological changes were also attenuated, and the bone marrow adipogenesis was inhibited in salidroside treated rats. Moreover, protein and mRNA ratio of bone osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) was upregulated in ovariectomized diabetic rats by salidroside treatment. The results above indicated that the protective effect of salidroside on bone loss induced by ovariectomy and diabetes was mainly due to its ability to suppress bone turnover, inhibit bone marrow adipogenesis, and up-regulate the OPG/RANKL ratio.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3