Author:
Xia Yong-Gang,Song Yan,Liang Jun,Guo Xin-Dong,Yang Bing-You,Kuang Hai-Xue
Abstract
American ginseng (Panax quinquefolium) has long been cultivated in China for the function food and medicine. Here, ultra-high performance liquid chromatography was coupled with electrospray ionization and triple quadrupole mass spectrometry (UPLC-ESI−-TQ-MS) for simultaneous detection of 22 ginsenosides in American ginseng cultivated in Mudanjiang district of Heilongjiang. The extraction conditions also were optimized by a Box Behnken design experiment. The optimized result was 31.8 mL/g as ratio of liquid to raw materials, 20.3 min of extraction time, and 235.0 W of extraction powers. The quantitative MS parameters for these 22 compounds were rapidly optimized by single factor experiments employing UPLC-ESI−-multiple reaction monitoring or multiple ion monitoring (MRM/MIM) scans. Furthermore, the established UPLC-ESI−-MRM-MS method showed good linear relationships (R2 > 0.99), repeatability (RSD < 3.86%), precision (RSD < 2.74%), and recovery (94–104%). This method determined 22 bioactive ginsenosides in different parts of the plant (main roots, hairy roots, rhizomes, leaves, and stems) and growth years (one year to four years) of P. quinquefolium. The highest total content of the 22 analytes was in the hairy roots (1.3 × 105 µg/g) followed by rhizomes (7.1 × 104 µg/g), main roots (6.5 × 104 µg/g), leaves (4.2 × 104 µg/g), and stems (2.4 × 104 µg/g). Finally, chemometric methods, hierarchical clustering analysis (HCA) and partial least squares discrimination analysis (PLS-DA), were successfully used to classify and differentiate American ginseng attributed to different growth years. The proposed UPLC-ESI−-MRM-MS coupled with HCA and PLS-DA methods was elucidated to be a simple and reliable method for quality evaluation of American ginseng.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献