Author:
Kuodis Zenonas,Matulaitienė Ieva,Špandyreva Marija,Labanauskas Linas,Stončius Sigitas,Eicher-Lorka Olegas,Sadzevičienė Rita,Niaura Gediminas
Abstract
Multifunctional amide-containing self-assembled monolayers (SAMs) provide prospects for the construction of interfaces with required physicochemical properties and distinctive stability. In this study, we report the synthesis of amide-containing thiols with terminal phenylalanine (Phe) ring functionality (HS(CH2)7CONH(CH2)2C6H5) and the characterization of the formation of SAMs from these thiols on gold by reflection absorption infrared spectroscopy (RAIRS). For reliable assignments of vibrational bands, ring deuterated analogs were synthesized and studied as well. Adsorption time induced changes in Amide-II band frequency and relative intensity of Amide-II/Amide-I bands revealed two-state sigmoidal form dependence with a transition inflection points at 2.2 ± 0.5 and 4.7 ± 0.5 min, respectively. The transition from initial (disordered) to final (hydrogen-bonded, ordered) structure resulted in increased Amide-II frequency from 1548 to 1557 cm−1, which is diagnostic for a strongly hydrogen-bonded amide network in trans conformation. However, the lateral interactions between the alkyl chains were found to be somewhat reduced when compared with well-ordered alkane thiol monolayers.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献