Author:
Liu Bo,Huang Lu,Xu Rongrong,Fan Huihong,Wang Yue
Abstract
Protein deamidation can severely alter the physicochemical characteristics and biological functions of protein therapeutics. Cobratide is a non-addictive analgesic with wide clinical acceptance. However, the Asn residue at position 48 from the N-terminus of the cobratide amino acid sequence (N48) tends to degrade during purification, storage, and transport. This characteristic could severely affect the drug safety and clinical efficacy of cobratide. Traditional methods for quantitating deamidation reported in previous research are characterised by low efficiency and accuracy; the quality control of cobratide via this method is limited. Herein, we developed an improved 18O-labelling method based on the detection of a unique peptide (i.e., the protein fragment of cobratide containing the N48 deamidation hotspot after enzymolysis) using an Orbitrap high-resolution mass spectrometer to quantify deamidated cobratide. The limits of detection and quantification of this method reached 0.02 and 0.025 μM, respectively, and inter- and intra-day precision values of the method were <3%. The accuracy of the 18O-labelling strategy was validated by using samples containing synthesised peptides with a known ratio of deamidation impurities and also by comparing the final total deamidation results with our previously developed capillary electrophoresis method. The recoveries for deamidation (Asp), deamidation isomerisation (iso-Asp), and total deamidation were 101.52 ± 1.17, 102.42 ± 1.82, and 103.55 ± 1.07, respectively. The robustness of the method was confirmed by verifying the chromatographic parameters. Our results demonstrate the applicability of the 18O-labelling strategy for detecting protein deamidation and lay a robust foundation for protein therapeutics studies and drug quality consistency evaluations.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Why to Study Peptides from Venomous and Poisonous Animals?;International Journal of Peptide Research and Therapeutics;2023-07-14