Harnessing Desmochloris edaphica Strain CCAP 6006/5 for the Eco-Friendly Synthesis of Silver Nanoparticles: Insights into the Anticancer and Antibacterial Efficacy

Author:

Hamida Reham Samir1ORCID,Ali Mohamed Abdelaal2,Alkhateeb Mariam Abdulaziz3ORCID,Alfassam Haifa Essa3,Momenah Maha Abdullah3ORCID,Bin-Meferij Mashael Mohammed3

Affiliation:

1. Institute for Protein Research, Osaka University, Osaka 565-0871, Japan

2. Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY) New Borg El-Arab, Alexandria 21934, Egypt

3. Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

Abstract

Microalgae-mediated nanoparticle (NP) biosynthesis is a promising green synthesis method that overcomes the challenges of conventional synthesis methods. The novel Desmochloris edaphica strain CCAP 6006/5 was isolated, purified, and characterized morphologically and genetically. GC-MS analysis of the algal biomass (DBio) phytochemicals showed the abundance for elaidic acid (18.36%) and monoolein (17.37%). UV-VIS spectroscopy helped analyze the effects of the AgNO3 concentration, algal/silver nitrate ratio, temperature, reaction time, illumination, and pH on AgNP synthesis. DBio extract or cell-free medium (DSup) of D. edaphica successfully biosynthesized small silver NPs (AgNPs), namely, DBio@AgNPs and DSup@AgNPs, under optimum reaction conditions. TEM and SEM showed a quasi-spherical shape, with average diameters of 15.0 ± 1.0 nm and 12.0 ± 0.8 nm, respectively. EDx and mapping analyses revealed that silver was the main element, the NP hydrodynamic diameters were 77.9 and 62.7 nm, and the potential charges were −24.4 and −25.8 mV, respectively. FTIR spectroscopy revealed that the DBio@AgNPs, and DSup@AgNPs were coated with algal functional groups, probably derived from algal proteins, fatty acids, or polysaccharides, representing reductant and stabilizer molecules from the synthesis process. They showed significant anticancer activity against breast cancer cells (MCF-7), low toxicity against normal kidney cells (Vero), and potent inhibitory activity against Staphylococcus aureus, Bacillus subtilis, and Shigella flexneri. D. edaphica is a novel biomachine for synthesizing small, stable and potent therapeutic AgNPs.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3