Abstract
Glucocorticoid metabolism at the tissue level is regulated by two isoenzymes 11β-hydroxysteroid dehydrogenase (11β-HSD), which mutually convert biologically active cortisol and inactive cortisone. Recent research is focused on the role of 11β-HSD1 and 11β-HSD2 as autocrine factors of tumor cell proliferation and differentiation. Herein, we report the synthesis of novel 2-(isopropylamino)thiazol-4(5H)-one derivatives and their inhibitory activity for 11β-HSD1 and 11β-HSD2. The derivative containing the spiro system of thiazole and cyclohexane rings shows the highest degree of 11β-HSD1 inhibition (54.53% at 10 µM) and is the most selective inhibitor of this enzyme among the tested compounds. In turn, derivatives containing ethyl and n-propyl group at C-5 of thiazole ring inhibit the activity of 11β-HSD2 to a high degree (47.08 and 54.59% at 10 µM respectively) and are completely selective. Inhibition of the activity of these enzymes may have a significant impact on the process of formation and course of tumors. Therefore, these compounds can be considered as potential pharmaceuticals supporting anti-cancer therapy.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献