Quantitative Retention (Structure)–Activity Relationships in Predicting the Pharmaceutical and Toxic Properties of Potential Pesticides

Author:

Janicka Małgorzata,Śliwińska AnnaORCID

Abstract

The micellar liquid chromatography technique and quantitative retention (structure)–activity relationships method were used to predict properties of carbamic and phenoxyacetic acids derivatives, newly synthesized in our laboratory and considered as potential pesticides. Important properties of the test substances characterizing their potential significance as pesticides as well as threats to humans were considered: the volume of distribution, the unbonded fractions, the blood–brain distribution, the rate of skin and cell permeation, the dermal absorption, the binding to human serum albumin, partitioning between water and plants’ cuticles, and the lethal dose. Pharmacokinetic and toxicity parameters were predicted as functions of the solutes’ lipophilicities and the number of hydrogen bond donors, the number of hydrogen bond acceptors, and the number of rotatable bonds. The equations that were derived were evaluated statistically and cross-validated. Important features of the molecular structure influencing the properties of the tested substances were indicated. The QSAR models that were developed had high predictive ability and high reliability in modeling the properties of the molecules that were tested. The investigations highlighted the applicability of combined chromatographic technique and QS(R)ARs in modeling the important properties of potential pesticides and reducing unethical animal testing.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3