Panchromatic Fluorescence Emission from Thienosquaraines Dyes: White Light Electrofluorochromic Devices

Author:

Corrente Giuseppina AnnaORCID,Parisi Francesco,Maltese Vito,Cospito Sante,Imbardelli Daniela,La Deda MassimoORCID,Beneduci AmerigoORCID

Abstract

Electrofluorochromic devices (EFCDs) that allow the modulation of the light emitted by electroactive fluorophores are very attractive in the research field of optoelectronics. Here, the electrofluorochromic behaviour of a series of squaraine dyes was studied for the first time. In solutions, all compounds are photoluminescent with maxima located in the range 665–690 nm, characterized by quantum yields ranging from 30% to 4.1%. Squaraines were incorporated in a polymer gel used as an active layer in all-in-one gel switchable EFCDs. An aggregation induced quenching occurs in the gel phase, causing a significant decrease in the emission quantum yield in the device. However, the squaraines containing the thieno groups (thienosquaraines, TSQs) show a panchromatic emission and their electrofluorochromism allows the tuning of the fluorescence intensity from 500 nm to the near infrared. Indeed, the application of a potential difference to the device induces a reversible quenching of their emission that is significantly higher and occurs at shorter switching times for TSQs-based devices compared to the reference squaraine dye (DIBSQ). Interestingly, the TSQs fluorescence spectral profile becomes more structured under voltage, and this could be explained by the shift of the aggregates/monomer equilibrium toward the monomeric species, due to electrochemical oxidation, which causes the disassembling of aggregates. This effect may be used to modulate the colour of the fluorescence light emitted by a device and paves the way for conceiving new electrofluorochromic materials based on this mechanism.

Funder

Ministero università e ricerca

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3