Chemical Synthesis and Biological Evaluation of 3-Substituted Estrone/Estradiol Derivatives as 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors Acting via a Reverse Orientation of the Natural Substrate Estrone

Author:

Ngueta Adrien Djiemeny,Roy Jenny,Maltais RenéORCID,Poirier DonaldORCID

Abstract

Estradiol (E2) plays an important role in the progression of diseases such as breast cancer and endometriosis. Inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), the enzyme that catalyzes the last step in the biosynthesis of the estrogenic hormone E2, therefore constitutes an interesting approach for the treatment of these two estrogen-dependent diseases. In order to obtain new inhibitors of 17β-HSD1, the impact of a m-carbamoylphenyloxy group at position three of an estrane nucleus was evaluated by preparing three derivatives of estrone (E1) and E2 using a microwave-assisted synthesis of diaryl ethers. Their inhibitory activity was addressed on two cell lines (T-47D and Z-12) representative of breast cancer and endometriosis, respectively, but unlike T-47D cells, Z-12 cells were not found suitable for testing potential 17β-HSD1 inhibitors. Thus, the addition of the m-carbamoylphenyl group at C3 of E1 (compound 5) did not increase the inhibition of E1 to E2 transformation by 17β-HSD1 present in T-47D cells (IC50 = 0.31 and 0.21 μM for 5 and E1, respectively), and this negative effect was more obvious for E2 derivatives 6 and 10 (IC50 = 1.2 and 1.3 μM, respectively). Molecular docking allowed us to identify key interactions with 17β-HSD1 and to highlight these new inhibitors’ actions through an opposite orientation than natural enzyme substrate E1′s classical one. Furthermore, molecular modeling experiments explain the better inhibitory activity of E1-ether derivative 5, as opposed to the E2-ether derivatives 6 and 10. Finally, when tested on T-47D and Z-12 cells, compounds 5, 6 and 10 did not stimulate the proliferation of these two estrogen-dependent cell lines. In fact, they reduced it.

Funder

CHU de Québec Research Center-Université Laval

Foundation du CHU de Québec

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference44 articles.

1. Baulieu, E.E., and Kelly, P.A. (1990). Hormones, from Molecules to Disease, Hermann, publishers in arts and science.

2. Do hormones cause breast cancer?;Thomas;Cancer,1984

3. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma;Dickson;Endocr. Rev.,1987

4. Inhibition of type 1 17β-hydroxysteroid dehydrogenase impairs the synthesis of 17β-estradiol in endometriosis lesions;Delvoux;J. Clin. Endocrinol. Metab.,2014

5. World Health Organization (WHO) (2022, November 14). International Classification of Diseases (Fact Sheets: Cancer), 11th Revision (ICD-11) Geneva WHO, 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3