Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes

Author:

Aazam Elham S.1ORCID,Majrashi Maryam A.1

Affiliation:

1. Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 23622, Saudi Arabia

Abstract

In this study, we report the cytotoxicity of a newly synthesized Schiff base HL ((E)-2-ethoxy-6((pyren-1-ylimino)methyl)phenol) and its derived metal complexes (Zn(II), Cu(II), Co(II), Cr(III), and Fe(III)) along with their structural characterizations by means of elemental analysis, magnetic moment, molar conductance, IR, UV-Vis, ESR, and mass spectrometry. The single X-ray diffraction of the HL shows that it exists in the phenol-imine form in its solid state. The NMR and IR data indicate that the bidentate binding of the Schiff base ligand with the metal center occurs during complexation through the azomethine nitrogen atom and the hydroxyl group oxygen atom of the 3-ethoxy salicylaldehyde. The electronic spectra and magnetic measurements indicate that the Co(II) complex has a tetrahedral geometry and that the Cr(III) and Fe(III) complexes have a distorted octahedral geometry. The ESR and electronic spectra suggest that the Cu(II) complex has a distorted tetrahedral geometry. The cytotoxic effects of the HL and all of the metal complexes were studied using human breast cancer (MCF-7) cells. The Cu(II) and Zn(II) complexes exhibited the highest activity against the tested cell line, with IC50 values of 5.66 and 12.74 μg/mL, respectively, and their activity was higher than that of the fluorouracil cancer drug against the MCF-7 cells (18.05 μg/mL).

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3