Abstract
Nickel nanopillar arrays were electrodeposited onto silicon substrates using porous alumina membranes as a template. The characterization of the samples was done by scanning electron microscopy, X-ray diffraction, and alternating force gradient magnetometry. Ni nanostructures were directly grown on Si by galvanostatic and potentiostatic electrodeposition techniques in three remarkable charge transfer configurations. Differences in the growth mechanisms of the nanopillars were observed, depending on the deposition method. A high correlation between the height of the nanopillars and the charge synthesis was observed irrespective of the electrochemical technique. The magnetization measurements demonstrated a main dependence with the height of the nanopillars. The synthesis of Ni nanosystems with a controllable aspect ratio provides an effective way to produce well-ordered networks for wide scientific applications.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献